# **COURSE PLAN**

| College      |                                  |  |  |  |  |
|--------------|----------------------------------|--|--|--|--|
| College      | : Karak College                  |  |  |  |  |
| Department   | : Engineering Department.        |  |  |  |  |
| Course       |                                  |  |  |  |  |
| Course Title | : Electronic Circuit II          |  |  |  |  |
| Course Code  | :20406212                        |  |  |  |  |
| Credit Hours | : 2 (1 Theoretical, 1 Practical) |  |  |  |  |
| Prerequisite | : 20406211                       |  |  |  |  |
| Instructor   |                                  |  |  |  |  |
| Name         | :                                |  |  |  |  |
| Office No.   | :                                |  |  |  |  |
| Tel (Ext)    | :                                |  |  |  |  |
| E-mail       |                                  |  |  |  |  |
| Office Hours | :                                |  |  |  |  |
| Class Times  |                                  |  |  |  |  |
|              |                                  |  |  |  |  |
| Text Book    |                                  |  |  |  |  |

Electronic Circuit II, Al-Balqa Applied University & KOICA, 2022.

# References

- Adel Sedra et al., "Microelectronic Circuits" 8th Ed., Oxford University Press, 2019
- Mahmood Nahvi and Joseph Edminister, "Schaum's Outline of Electric Circuits" 7th Ed., McGraw-Hill, 2017.
- Robert Boylestad, "Electronic Devices and Circuit Theory" 11th Ed., Pearson, 2014.

#### SECOND: PROFESSIONAL INFORMATION COURSE DESCRIPTION

This course explains the characteristics and operations of advanced circuits with common electronic components. The advanced circuits include operational amplifiers, oscillators, regulators, filters, signal generators, etc., which are widely used in electronic equipment.

# **COURSE OBJECTIVES**

The objectives of this course are to enable the student to do the following:

- Explain the theory of differential amplifier, basic and applied circuit of operational amplifier.
- Explain the current and voltage values in op-amp circuits.
- Explain the characteristics and operations of active filters
- Explain the characteristics and operations of sine and non-sine wave generator.



# • Explain PLL circuit, modulation/demodulation circuit.

#### **COURSE LEARNING OUTCOMES**

By the end of the course, the students will be able to:

CLO1. Analyze the work of Op-Amp and determine its characteristics

CLO2. Determine the circuits and the actual operation of the amplifier

CLO3. Determine current and voltage values for op-amp circuits

CLO4. Explain the components of oscillators, their working principle, and their construction methods

CLO5. Examine the voltage regulator circuits and their working methods

CLO6. Explain how to build filters

CLO7. Determine the types of filters and the application of each type

CLO8. Determine the types of signal generators and their uses

CLO9. Determine the methods of generating sinusoidal signals and know their characteristics and uses

| COURSE | COURSE SYLLABUS          |                                                                                                                                                                                                                                     |               |                      |  |
|--------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|--|
| Week   | topic                    | Topic details                                                                                                                                                                                                                       | Related<br>LO | Proposed assignments |  |
| 1      | Operational amplifier    | <ul> <li>The Op-Amp Terminals.</li> <li>Function and Characteristics of the Ideal<br/>Op Amp.</li> <li>Differential and Common-Mode Signals.</li> </ul>                                                                             | CLO1          |                      |  |
| 2      | Operational amplifier    | <ul> <li>The Inverting op-amp Closed-Loop Gain.</li> <li>Effect of Finite Open-Loop Gain on<br/>Inverting op-amp.</li> <li>Inverting op-amp Input and Output<br/>Resistances.</li> <li>The Weighted Summing Op-Amp</li> </ul>       | CLO2          |                      |  |
| 3      | Operational<br>amplifier | <ul> <li>Noninverting Configuration Closed-Loop<br/>Gain.</li> <li>Noninverting op-amp Effect of Finite<br/>Open-Loop Gain.</li> <li>Noninverting op-amp Input and Output<br/>Resistance.</li> <li>The Voltage Follower.</li> </ul> | CLO2          |                      |  |
| 4      | Operational amplifier    | <ul> <li>A Single-Op-Amp Difference Amplifier.</li> <li>A Superior Circuit: The Instrumentation<br/>Amplifier.</li> <li>The Op-Amp Integrator.</li> <li>The Op-Amp Differentiator.</li> </ul>                                       | CLO3          |                      |  |
| 5      | Oscillators and timers   | <ul> <li>Sinusoidal Oscillators Feedback Loop.</li> <li>The Oscillation Criterion.</li> <li>Analysis of Oscillator Circuits.</li> <li>Nonlinear Amplitude Control.</li> </ul>                                                       | CLO4          |                      |  |
| 6      | Oscillators and timers   | <ul><li>The Wien-Bridge Oscillator.</li><li>The Phase-Shift Oscillator.</li><li>The Quadrature Oscillator.</li></ul>                                                                                                                | CLO4          |                      |  |



| Week | topic                        | Topic details                                                                                                                                                                                                                                                                 | Related<br>LO | Proposed<br>assignments |
|------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|
|      |                              | • The Active-Filter-Tuned Oscillator.                                                                                                                                                                                                                                         |               |                         |
| 7    | Regulator and power supplies | <ul> <li>Voltage regulator</li> <li>Zener diode as a regulator</li> <li>Operational characteristics of Zener diode</li> </ul>                                                                                                                                                 | CLO5          |                         |
| 8    |                              | Mid exam                                                                                                                                                                                                                                                                      |               |                         |
| 9    | Regulator and power supplies | <ul> <li>Discrete Transistor Voltage Regulation.</li> <li>IC Voltage Regulators.</li> <li>Practical Applications.</li> </ul>                                                                                                                                                  | CLO5          |                         |
| 10   | Filters                      | <ul> <li>Filter Transmission.</li> <li>Filter Types.</li> <li>Filter Specification.</li> <li>Obtaining the Filter Transfer Function:<br/>Filter Approximation.</li> </ul>                                                                                                     | CLO6          |                         |
| 11   | Filters                      | <ul> <li>Obtaining the Filter Circuit: Filter<br/>Realization.</li> <li>The Filter Order.</li> <li>The Filter Poles.</li> <li>The Filter Transmission Zeros.</li> <li>All-Pole Filters.</li> </ul>                                                                            | CLO6          |                         |
| 12   | Filters                      | <ul> <li>First-Order Filter.</li> <li>Second-Order Filter.</li> <li>The Butterworth Filter.</li> <li>The Chebyshev Filter.</li> </ul>                                                                                                                                         | CLO7          |                         |
| 13   | Filters                      | <ul> <li>The Antoniou Inductance-Simulation<br/>Circuit.</li> <li>The Op Amp–RC Resonator.</li> <li>Realization of the Various Filter Types.</li> </ul>                                                                                                                       | CLO7          |                         |
| 14   | Wave generator               | <ul> <li>The Bistable Feedback Loop.</li> <li>Transfer Characteristic of the Bistable Circuit.</li> <li>Triggering the Bistable Circuit.</li> <li>The Bistable Circuit as a Memory Element.</li> <li>A Bistable Circuit with Noninverting Transfer Characteristic.</li> </ul> | CLO8          |                         |
| 15   | Wave generator               | <ul> <li>Generating Square Waveforms Using a<br/>Bistable Circuit.</li> <li>Generating Triangular Waveforms.</li> <li>Generation of Sine Waves.</li> </ul>                                                                                                                    | CLO9          |                         |
| 16   |                              | Final exam                                                                                                                                                                                                                                                                    |               |                         |

# **COURSE LEARNING RESOURCES**

Teaching will be achieved using available resources including lectures, data show, and materials uploaded on the e-learning system.



#### **ONLINE RESOURCES**

- https://www.electronics-tutorials.ws/
- https://www.allaboutcircuits.com/textbook/

# **ASSESSMANT TOOLS**

| Assessment Tools     | %    |
|----------------------|------|
| Projects and Quizzes | 20%  |
| MID Exam             | 30%  |
| Final Exam           | 50%  |
| Total Marks          | 100% |

# **THIRD: COURSE RULES ATTENDANCE RULES**

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each class. Absence of 10% will result in a first written warning. Absence of 15% of the course will result in a second warning. Absence of 20% or more will result in forfeiting the course and the student will not be permitted to attend the final examination. Should a student encounter any special circumstances (i.e. medical or personal), he/she is encouraged to discuss this with the instructor and written proof will be required to delete any absences from his/her attendance records.

# **GRADING SYSTEM**

**Example:** 

Grade points

## REMARKS

{The instructor can add any comments and directives such as the attendance policy and topics related to ethics}

#### **COURSE COORDINATOR** Course Coordinator: Eng.mahmoud aljafari Department Head: Signature: Eng.mahmoud aljafari Signature: Date: Date: